Home Page > > Details

Ghostwriter ELEC ENG 3088/7088 Computer ArchitectureHelp With C/C++

ELEC ENG 3088/7088 Computer Architecture

Assignment — RISC-V RV64I ISS — Stage 1

Your task for this assignment is to develop an instruction set simulator (ISS) for the RV64I subset of the RISC-V instruction set. An instruction set simulator is a program used by computer architects to simulate execution of a computer’s instructions. It contains representations of the computer’s memory and the internal registers of the CPU. It responds to commands that specify initialization and inspection of the memories and registers, and control execution of instructions.

The RISC-V instruction set is described in “The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA”, available on the course website. The RV64I subset is described in Chapter 5 of the Instruction Set Manual, building on the RV32I subset described in Chapter 2.  The instruction encoding is summarized in Chapter 24. For this assignment, you  should implement just the RV64I base integer instruction set, with the following exceptions:

•    FENCE: This instruction should be decoded as a legal instruction but perform no operation.

•    ECALL, EBREAK: These instructions should be decoded as legal instructions, but a message should be displayed indicating they are unimplemented.

For load and store instructions, you can assume that the effective address is properly aligned. Do not implement mis - aligned loads or stores. For any fetched instruction word that does not represent an RV64I instruction, a message should be displayed indicating the instruction is illegal. In Stage 2, you will implement exception handling, which will be used for illegal instructions.

We have provided a skeleton program on the course website for you to use as a starting point. The program is written in C++ and is located in the Assignment file folder (also linked in the Assignment module). You can download either rv64sim.zip or rv64sim.tgz; the content is the same in each. The skeleton program implements processing of com - mand-line options and input commands. Your task is to implement classes to model the processor and memory. Head- er files are provided showing the member functions required. You can add additional classes if you need to.

The only command-line option you need to implement at this stage is the -v option to enable verbose output. If the - v option is specified on the command line, your program can display debugging information. If the option is omitted, your program should display only the output required for each command. Your program must format that output exactly as specified below, since the assessment process will compare you output with expected output.

The rv64sim program reads commands from the standard input stream, one command per line. The commands are listed inTable 1.

Each command may be followed by a comment, starting with the ‘#’ character and extending to the end of the line. Blank lines are permitted, as are lines containing only a comment.

The initial value of all processor general purpose registers should be 0, and the initial value of the PC should also be

0. The memory should appear to have all locations initialized to 0. Your program should count the number of instructions executed. This will be reported on completion of execution.

You can test your ISS by using the “m” command to set memory locations to the encoded value of RISC-V instructions, using the “pc” command to set the PC to the start of the code, then using the “ .” command to execute the code. Alternatively, you can use the RISC-V GNU Compiler Toolchain (C compiler, assembler, linker, binutils; available at https://github.com/riscv/riscv-gnu-toolchain) to generate hex files to load into memory. We will use both of these processes when we assess your ISS.

Performance of an ISS program is important. Computer architects typically use them to develop code for embedded system, so they must be able to execute 100s of thousands of instructions per second. You should design your ISS with performance in mind. The skeleton program provided uses the native integer data types uint32_t and uint64_t to represent  instructions and data,  rather than using a dynamically allocated class-typed object  or string. When you implement the memory, you should not attempt to represent it using a large array of words. Since addresses are 64 bits, that would imply an array of 264  bytes. Instead, consider a representation that allocates blocks of memory on demand (that is, on the first read or write to an address within a block).

Table 1 rv64sim commands

Command

Operation performed

xn

Show the content of register xn in hex (n is register number, from 0 to 31). The value is displayed as 16 hex digits with leading 0s.

xn = value

Set register xn to value (value in hex).

pc

Show content of PC register in hex. The value is displayed as 16 hex digits with leading 0s.

pc = address

Set PC register to address (address in hex).

m address

Show the content of memory doubleword at address (address in hex, rv64sim rounds it down to nearest doubleword-aligned address). The value is displayed as 16 hex digits     with leading 0s.

m address = value

Set memory doubleword at address to value (address in hex, rv64sim rounds it down to nearest doubleword-aligned address; value in hex).

l "filename"

Load memory from Intel hex format file named filename. If the file includes a start address record, the PC is set to the start address.

.

Execute one instruction.

. n

Execute n instructions.

b address

Set an execution breakpoint at address. If the simulator is executing multiple instructions (. n command), it stops when the PC reaches address without executing that instruction.  There is only one execution breakpoint; using the b command with a different address

removes any previously set breakpoint.

b

Clear the breakpoint.

Please keep an eye on the Assignment forum on the course website. There will no doubt be questions of clarification of requirements arising that we will answer there. We will also announce incremental releases of a test suite that you should use to test your program.

Your work for Stage 1 will be assessed based on the following criteria, with points awarded out of 1000:

•    Program builds and runs — 100 points

•   Correct execution of instruction, based on the number of provided testcases that pass — 500 points

•   Correct execution of instruction, based on the number of marking cases that pass — 200 points

•    Program efficiency, based on runtime

•    not exceeding a limit — 50 points

•    overall efficiency – 150 points

The points for this assignment will comprise 15% of your final assessment for the course.

For the submission deadline, please refer to the course page on MyUni.

Postgraduate requirements

If you are enrolled in the postgraduate course (ELEC  ENG  7088), you should implement the following additional requirements:

During simulated execution, you should count the number of simulated clock cycles, in addition to the number of instructions executed. You should use the following cycle counts for various instruction types:

•   Conditional branch instruction: 2 cycles if the branch is taken, or 1 cycle if the branch is not taken.

•    Unconditional branch instruction: 2 cycles.

•    Load instruction: 3 cycles.

•   Store instruction: 2 cycles.

•   All other instructions: 1 cycle.

On completion of a simulation, if the -c option is specified on the command line, your program will report the total number of simulated clock cycles taken.





Contact Us - Email:99515681@qq.com    WeChat:codinghelp
Programming Assignment Help!