Home Page > > Details

COMP30023Help With ,Help With C/C++ Programming

COMP30023: Computer Systems
Project 1: Process and Memory Management
Released: March 22, 2024
Due: 11:59 pm April 19, 2024 AEST
Weight: 15% of the final mark
1 Background
In this project, you will familiarise yourself with process scheduling and memory management.
You will simulate a process manager in a system where all processes are fully CPU-bound (i.e.,
have a single CPU burst and do no I/O). The process manager i) allocates processes to a CPU in
a round-robin manner and ii) supports contiguous, paged, and virtual memory management.
2 Process Manager Overview
The process manager runs in cycles. A cycle occurs after one quantum has elapsed. The process
manager has its own notion of time, referred to from here on as the simulation time. The simulation
time (TS) starts at 0 and increases by the length of the quantum (Q) every cycle. For this project,
Q will be an integer value between 1 and 3 (1 ≤ Q ≤ 3).
At the start of each cycle, the process manager must carry out the following tasks in sequence:
1. Identify all processes that have been submitted to the system since the last cycle occurred
and add them to the process queue in the order they appear in the process file. A process is
considered to have been submitted to the system if its arrival time is less than or equal to
the current simulation time Ts.
2. Identify whether the process (if any) that is currently running (i.e., was given CPU time in
the previous cycle) has completed its execution. If it has:
– The process’s state is updated (see Section 3)
– The process is removed from the process queue
– The process’s memory is deallocated
3. Determine the process that runs in this cycle. This decision is made based on the scheduling
algorithm (round robin) and the memory allocation strategy. This step entails:
– Updating the state of the process that is currently running (if any) and the state of the
newly allocated process (see Section 3)
– Updating the process queue if needed
A detailed explanation of this stage is given for each task.
4. Increment the simulation time by Q seconds.
This cycle is repeated iteratively until all the processes that were submitted to the system have
completed their execution.
1
3 Process Lifecycle
The lifecycle of a process is as follows:
1. A process is submitted to the process manager via an input file (See Section 6 for more
details). Note that you may read all the processes in the input file into a data structure, and
use said data structure to determine which processes should be added to the process queue
based on their arrival time and the current simulation time.
2. A process is in a READY state after it has arrived (arrival time less than or equal to
the simulation time). READY processes are considered by the scheduling algorithm as
candidates to be allocated to the CPU.
3. The process that has been selected to use the CPU enters a RUNNING state.
4. After running for one quantum,
– If the process has completed its execution, the process is terminated and moves to the
FINISHED state.
– If the process requires more CPU time and there are other READY processes, the
process transitions back to the READY state to await more CPU time.
– If the process requires more CPU time and there are no other READY processes, the
process remains in the RUNNING state and runs for another quantum.
For simplicity, a process can only transition to the FINISHED state at the end of a quantum.
This means that, in cases in which the service time of a process is not a multiple of the
quantum, the total amount of time the process spends in the RUNNING state will be greater
than its service time.
4 Process Scheduling
In this section, you will focus on implementing the scheduling logic of the process manager. For
this purpose, you will assume infinite memory that requires no management.
4.1 Task 1: Round-Robin Scheduling with Infinite Memory
In this task, you will implement a round-robin scheduler under the assumption that the memory
requirements of processes are immediately satisfied upon arrival. This will allow you to focus
on implementing the scheduling logic before moving on to implementing memory management
approaches in subsequent tasks.
In round-robin scheduling, processes execute on the CPU one quantum at a time. The scheduler
allocates the CPU to the process at the head of the process queue (i.e., the process enters the
RUNNING state). After one quantum has elapsed, the process returns to the READY state,
moves to the tail of the process queue, and the CPU is allocated to the next process in the queue
(i.e., the new head of the queue).
There are two special cases in which a process does not transition from RUNNING to READY at
the end of a quantum (as defined in Section 3):
1. There are no other processes in the queue, and the process requires more CPU time. The
process remains in a RUNNING state and continues to use the CPU for another quantum.
2. The process completed its execution. The process transitions to the FINISHED state and is
removed from the process queue.
Note that, based on the order in which the process manager performs tasks (Section 2), a process
that has exhausted its quantum is placed at the tail of the process queue after newly arrived
processes have been inserted into said queue.
2
5 Memory Management
For the tasks in this section, you will assume memory is finite. Memory must be allocated to a
process before said process is able to run on the CPU. Consequently, a process’s memory must be
deallocated upon completion of said process.
To accomplish this, you will extend the round-robin scheduler implemented in Task 1 to consider
the memory requirements of a process before it is able to enter the RUNNING state. When it is a
process’ turn to execute (as determined by the round-robin algorithm), the process manager must
first allocate memory to the process by following one of the following strategies:
• Allocating a contiguous block of memory (Task 2)
• Allocating all the pages of the process to frames in memory (Task 3)
• Allocating a subset of the pages of the process to frames in memory (Task 4)
Only if, and after, memory allocation is successful is a process allowed to use the CPU for the
corresponding quantum.
5.1 Task 2: Round-Robin Scheduling with Contiguous Memory Allocation
In this task, the process manager allocates a process’s memory in its entirety (i.e., there is no
paging) and in a contiguous block. Memory must be allocated following the First Fit memory
allocation algorithm1 as explained in the textbook and the lectures. The memory remains allocated
for the duration of the process’s runtime (i.e., there is no swapping).
A process for which memory allocation cannot be currently met should remain in a READY state,
and be moved from the head to the tail of the process queue. Within the same cycle, the scheduler
must continue to iterate over the process queue until it finds a process that can execute (i.e.,
memory has been allocated). Note that it is only after a process has successfully transitioned from
READY to RUNNING or when the process queue is empty that the process manager moves on
to the next cycle, and hence, the next quantum.
Important Notes:
• The memory capacity of the simulated computer is static. For this project, you will assume
a total of 2048 KB is available to allocate to user processes.
• The memory requirement (in KB) of each process is known in advance and is static, i.e., the
amount of memory a process is allocated remains constant throughout its execution.
• For simplicity, you will assume memory is addressed in blocks of 1 KB. Memory addresses
in the system are therefore in the range [0..2048).
• When allocating a memory block, always allocate the block starting at the lowest memory
address of a memory hole. For example, a block of 10 KB needs to be allocated. The
identified memory hole (according to first-fit) is [10..30]. The memory block should then be
allocated to addresses [10..19].
• Once a process terminates, its memory must be freed and merged into any adjacent holes if
they exist.
A sample execution flow, as specified by this task, would be as follows:
1. The round-robin scheduler determines process p is the next process to be allocated to the
CPU.
2. Before allocating the process to the CPU, the process manager checks whether p has been
allocated memory.
1Hint: The First Fit algorithm selects the first available contiguous block of memory that is large enough to
accommodate the memory requirement of a process.
3
(a) If p’s memory has already been allocated, p gets to use the CPU for the corresponding
quantum.
(b) If p’s memory has not been allocated, the process manager attempts to allocate a contiguous block.
i. If successful, p gets to use the CPU for the corresponding quantum.
ii. If the allocation is unsuccessful (i.e., there is no sufficient memory in the system at
this time), p does not execute, remains in a READY state, and is moved to the
tail of the process queue. The scheduler looks for another process to execute by
returning to step 1.
5.2 Task 3: Round-Robin Scheduling with Paged Memory Allocation
This task assumes a paged memory system with swapping. The memory required by a process is
divided into pages, and physical memory is divided into frames. Pages that are mapped to frames
in memory are considered to be allocated.
Before a process runs on the CPU, all of its pages must be allocated to frames in memory. If there
are not enough empty frames to fit a process’s pages, then pages of another process or processes
need to be swapped to disk to make space for the process. When choosing a process to swap, you
must choose the process that was least recently executed among other processes (excluding the
current one) and evict all of its pages. If there is still not enough space, continue evicting all
pages of other processes following the least-recently executed policy until there is sufficient space.
Important Notes:
• You will assume a total of 2048 KB is available to allocate to user processes.
• The memory requirement of each process (in KB) is known in advance and is static, i.e.,
the amount of memory a process requires, and hence the number of pages, remains constant
throughout its execution.
• Once a process terminates, all of its pages must be evicted from memory (i.e., deallocated).
• The size of pages and frames is 4 KB.
• Each frame is numbered, starting from 0 and increasing by 1. For the assumed memory size
of 2048 KB, there are 512 pages in total, with page numbers from 0 to 511.
• Pages should be allocated to frames in increasing frame number. For example, if a process
requires 3 pages to be allocated, and frames 0, 1, 5, 8, and 9, are free (or were freed via
swapping). The process pages must be mapped to frames 0, 1, and 5.
A sample execution flow, as specified by this task, would be as follows:
1. The round-robin scheduler determines process p is the next process to be allocated to the
CPU.
2. Before allocating the process to the CPU, the process manager checks whether p’s pages are
allocated in memory.
(a) If p’s pages are allocated, p uses the CPU for the corresponding quantum.
(b) If p’s pages have not been allocated and there are not enough free frames in memory, the
process manager evicts the pages of one or more processes following the least-recently
executed policy.
(c) Once there are sufficient free frames in memory, the process manager allocates p’s pages
and p runs on the CPU for the corresponding quantum.
4
5.3 Task 4: Round-Robin Scheduling with Virtual Memory Allocation
This task will assume a paged system with swapping similar to that in Task 3. However, we will
now consider the case of virtual memory providing the illusion of a larger-than-available memory
to processes.
You will now assume that a process does not need all pages to be allocated before it is allowed to
execute. In this task, a process can be executed if at least 4 of its pages are allocated (or all pages
in case of processes requiring less than 4 pages). If there are more than 4 frames available at the
time of allocation(or reallocation), the process manager must allocate as many pages as possible.
For example, if a process requires 7 pages and there are 6 frames available, the process manager
must allocate 6 of the 7 pages to the available frames. If a process requires 7 pages and there are
10 frames available, the process manager must allocate all 7 pages to the free frames.
Similar to swapping, if there are not enough empty frames for the process that is scheduled to be
executed, pages of the least recently executed process need to be evicted one at a time until there
are 4 empty pages (or less if the process requires less than 4 pages). The lowest numbered frames
belonging to the least recently executed process must be evicted first. For example, if the least
recently executed process was allocated frames 1,5,7,9, and 2 frames need to be evicted, frames
1,5 must be evicted. This is in contrast to Task 3, where all pages of the least recently executed
process would be evicted.
Important Notes:
• You will assume a total of 2048 KB is available to allocate to user processes.
• Once a process terminates, any allocated pages must be evicted from memory (i.e., deallocated).
• The size of pages and frames is 4 KB.
• Each frame is numbered, starting from 0 and increasing by 1. For the assumed memory size
of 2048 KB, there are 512 pages in total, with page numbers from 0 to 511.
• Pages should be allocated to frames in increasing frame number. For example, if a process
requires 3 pages to be allocated, and frames 0, 1, 5, 8, and 9, are free (or were freed via
swapping). The process pages must be mapped to frames 0, 1, and 5.
A sample execution flow, as specified by this task, would be as follows:
1. The round-robin scheduler determines process p, requiring n pages, is the next process to be
allocated to the CPU.
2. Before allocating the process to the CPU, the process manager checks whether p has at least
4 (n ≥ 4) or all (n < 4) pages allocated.
(a) If p’s page allocation requirements are met, p uses the CPU for the corresponding
quantum.
(b) If p’s page allocation requirements are not met and there are not enough free frames
in memory, the process manager evicts just enough pages to meet the page allocation
requirements of p following the least-recently executed policy.
(c) Once there are sufficient free frames in memory, the process manager allocates p’s pages
and p runs on the CPU for the corresponding quantum.
6 Program Specification
Your program must be called allocate and take the following command line arguments. The
arguments can be passed in any order but you can assume that all the arguments will be passed
correctly, and each argument will be passed exactly once.
Usage: allocate -f -m (infinite | first-fit | paged | virtual) -q (1 | 2 | 3)
-f filename will specify a valid relative or absolute path to the input file describing the processes.
5
-m memory-strategy where memory-strategy is one of {infinite, first-fit, paged, virtual}.
-q quantum where quantum is one of {1, 2, 3}.
The input file, filename, contains the list of processes to be executed, with each line containing a
process. Each process is represented by a single space-separated tuple (time-arrived, process-name,
service-time, memory-requirement).
You can assume:
• The file will be sorted by time-arrived which is an integer in [0, 2
32) indicating seconds.
• All process-names will be distinct uppercase alphanumeric strings of minimum length 1 and
maximum length 8.
• The first process will always have time-arrived set to 0.
• service-time will be an integer in [1, 2
32) indicating seconds.
• memory-requirement will be an integer in [1, 2048] indicating KBs of memory required.
• The file is space delimited, and each line (including the last) will be terminated with an LF
(ASCII 0x0a) control character.
• Simulation time will be an integer in [0, 2
32) indicating seconds.
Note that no assumptions may be made about the number of processes in the input file and that
there can be input files with large gaps in the process arrival time. You can, however, assume
that the input files we will use to test your program are such that simulations will complete in a
reasonable amount of time.
In addition, no assumptions may be made about the length of the file name (filename).
You can read the whole file before starting the simulation or read one line at a time.
We will not give malformed input (e.g., negative memory requirement or more than 4 columns in
the process description file). If you want to reject malformed command line arguments or input,
your program should exit with a non-zero exit code per convention.
Example: ./allocate -f processes.txt -m infinite -q 3.
The allocate program is required to simulate the execution of processes in the file processes.txt
using the round-robin scheduling algorithm and the infinite memory strategy with a quantum of 3
seconds.
Given processes.txt with the following information:
0 P4 30 16
29 P2 40 64
99 P1 20 32
The program should simulate the execution of 3 processes where process P4 arrives at time 0,
needs 30 seconds of CPU time to finish, and requires 16 KB of memory; process P2 arrives at time
29, needs 40 seconds of time to complete and requires 64 KB of memory, etc.
7 Expected Output
In order for us to verify that your code meets the above specification, it should print to standard
output (stderr will be ignored) information regarding the states of the system and statistics of
its performance. All times are to be printed in seconds.
6
7.1 Execution transcript
For the following events, the code should print out a line in the following format:
• When a process runs on the CPU (this includes the first time and every time it resumes its
execution):
Contact Us - Email:99515681@qq.com    WeChat:codinghelp
Programming Assignment Help!