Home Page > > Details

Ghostwriter Semester 1, 2024 CITS4402 Computer VisionGhostwriter Python Programming


Semester 1, 2024   CITS4402 Computer Vision

Project:  Applications of Computer Vision in Medicine: Magnetic Resonance Imaging Classification for Glioma Diagnosis

Timeline

Week 7 to Week 12: Work on your project. You have 6 weeks. The facilitators will be available in the labs during the lab hours for questions.

Week 12 (21st  & 22nd  of May 2024):  Presentation of the projects during the lab hours. The schedule will be announced.

Due: Friday, 24th  of May 2024, 4 PM (NO EXTENSIONS)

Grouping

Form groups of 3 students and include the first names and surnames of the group members on LMS Discussion board. This should have been done by now.

Applications of Computer Vision in Medicine: Magnetic Resonance Imaging Classification for Glioma Diagnosis

Background

Medical imaging is a critical application of Computer Vision (CV). In this project, we will apply CV techniques to Magnetic Resonance Imaging (MRI) for glioma diagnosis. Glioma is a type of malignant brain tumor with varying degrees of severity. Gliomas can  be broadly categorized into  Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG), with LGG being less aggressive and HGG being more aggressive. Accurate diagnosis is crucial for clinical decision-making as the intervention and prognosis significantly differ  between  LGG and  HGG  patients.  Currently, the diagnosis involves  both (i)  non- invasive  imaging  studies  and   (ii)   invasive  histopathological  examinations,  with  the   latter   being essential  for  a  definitive  diagnosis.   However,   invasive  examinations,  such  as   biopsy  or  surgical resection of the tumor tissue,  pose  high  risks  to  patients.  Therefore, there  is  a  pressing  need  to perform. glioma diagnosis solely based on non-invasive imaging studies.

A commonly used medical imaging modality for non-invasive imaging studies is MRI. MRI uses strong magnetic fields and  radio waves to  construct volumetric  images  of the  internal  structures  of the body.  It  is  used  for  imaging  patients  with glioma  due  to  its  ability  to  provide  excellent  contrast between   brain   tumor   and    normal   brain   tissues.   Glioma   exhibits   extreme    heterogeneity   in appearance and shape when visualized on MRI, making image-based diagnosis with the naked eye very challenging. However, LGG/HGG may have certain intrinsic, unique imaging features, suggesting the potential for leveraging CV techniques for image-based diagnosis.

Project Overview

In this project, our objective is to use CV techniques to classify patients with LGG or HGG based on their MRI studies. The project can be divided into the following steps.

•    Step One: Data sourcing;

•    Step Two: Visualization;

•    Step Three: Feature Detection and Extraction;

•    Step Four: Feature Selection;

•    Step Five: Classification using SVM.

Step One: Data Sourcing

The dataset we are  using is  publicly available on  Kaggle. You  need to first  register  on  Kaggle and download the dataset.

Source of data:https://www.kaggle.com/datasets/awsaf49/brats2020-training-data/data

The  dataset  contains   MRI  of  369   patients  with  glioma.  An   MRI  volume   is  a  volumetric  image comprising n slices (layers of the volume). Each slice comprises h × w pixels; for the entire volume, there are h × w × nvoxels (pixels in 3D). In this dataset, n=155 for every MRI volume; the MRI slices are stored as H5 files. The filenames follow the pattern volume_[volume ID]_slice_[slice ID], e.g., volume  1  slice_0  suggests the 0th   slice of the 1st  volume. Each H5 file contains four h × w images and three segmentation masks for three tumor sub-regions. The three tumor sub-regions include (i) the necrotic tumor core, (ii) the non-necrotic tumor core, and (iii) the surrounding tissues invaded by the tumor.  For  simplicity,  the  three  segmentation  masks  can  be  merged  to  represent  the  whole tumor; however, you are free to perform. an analysis for each sub-region.

The  four  images  detail  the  same  anatomical   position  and  differ   in  terms  of  image  acquisition protocol. They  can  be  considered  as  four  different  channels  (sequences),  similar  to  the  R,  G,  B channels  of  a  natural  image;  however,  for  subsequent  operation,  they   have  to   be   processed separately. The four images are stored inah × w × 4 array: the 1st, 2nd, 3rd, 4th  (MATLAB)/0th, 1st, 2nd, 3rd   (Python)  ‘layer’  of  the  array  corresponds  to  the  T2  Fluid  Attenuated  Inversion  Recovery  (T2- FLAIR),  native  (T1),  post-contrast  T1-weighted  (T1Gd),  T2-weighted  (T2)  channel,  respectively.  An example  of  the  four  channels  of  the  same  anatomical   position  is  shown   in  Fig.  1.  While  the knowledge of MRI is out of scope for this course, and not needed for this project, interested readers may refer to the following resources:

•   https://en.wikipedia.org/wiki/Magnetic_resonance_imaging#Sequences

•   https://rads.web.unc.edu/wp-content/uploads/sites/12234/2018/05/Phy-MRI-Made- Easy.pdf

 

Figure 1: The four channels of the same anatomical position. Left to right: T2-FLAIR, T1, T1Gd, T2.

The name_mapping.xlsx file contains information regarding the grading of the patients with glioma from whom the MRI was acquired. Column A contains the diagnosis information; column F contains the corresponding volume ID.

Step Two: Visualization

In radiology departments, specialized software is often used for visualization, allowing clinicians to easily examine and annotate  MRI volumes  in a slice-by-slice  manner. Some open-source software includes  3D  Slicer  (https://www.slicer.org/)  and  ITK-SNAP  (http://www.itksnap.org/).  Feel  free  to download one of the software and explore it.

For visualization, the task is to utilize the MATLAB/Python GUI to build a visualization tool mimicking the specialized software. The visualization tool should allow selecting a directory containing multiple H5 files, selecting the MRI channel to be displayed, turning on/off the tumor mask superimposed on the MRI image, and browsing through the MRI slices. Detailed requirements for the GUI can be found in the Deliverables section.

Step Three: Feature Detection and Extraction

There  are two types  of features  that we  are  going to  explore:  (i)  conventional  features  and  (ii) radiomic features.

Conventional Features

Conventional  features   are  more  interpretable  to   human  and  are  often   recognized  as  imaging biomarkers for clinical decision-making. In the context imaging glioma, conventional features can be further divided into two subgroups: features encoding tumor (i) size and (ii) location information. Three conventional features are required for each MRI volume: (1) Maximum Tumor Area (encoding size  information);  (2)  Maximum  Tumor   Diameter  (encoding  size   information);  (3)  Outer  Layer Involvement (encoding location information).

1.    Maximum Tumor Area

On a slice, the tumor area is defined as the number of tumorous pixels. For all slices of a given volume, calculate the Maximum Tumor Area.

2.    Maximum Tumor Diameter

On a slice, the tumor diameter is defined as the longest linear measurement (pixels) across the largest tumor component on the slice; the longest linear measurement across any component can be measured using principal component analysis of the component.

For all slices of a given volume, calculate the Maximum Tumor Diameter.

3.    Outer Layer Involvement

The outer layer of the brain is one of the most important regions, as it is where the cerebral cortex, which is responsible for cognition, is located. Hence, the outer layer involvement is a key indicator  of  the  likelihood  of  cognitive  disorder.  A  pair  of  examples  of  the  outer  layer  not invaded/invaded by the brain tumor is shown in Fig. 2.

Assume that on all slices, the outer layer of the brain has a constant thickness of 5 pixels. For a given volume, calculate the percentage of Outer Layer Involvement.

Figure 2 Left: the outer layer not invaded by the brain tumor. Right: the outer layer invaded by the brain tumor.

Radiomic Features

Radiomic features are  high-level quantitative features that can  be extracted from  images through mathematical operations.  Radiomic  features  can  be  categorized  into  three  subtypes:  (i)  intensity features, (ii) shape features, (iii) texture featuresIntensity features are also known as first order features, which describe the  histogram distribution of pixel/voxel values. Shape features describe the geometry of the Region of Interest (ROI) regardless of the intensity of the ROI. Texture features are based on the spatial distribution of the pixel/voxel values. Both MATLAB and Python have built-in libraries that support automatic extraction of large amount of radiomic features:


•   MATLAB:Get Started with Radiomics - MATLAB & Simulink - MathWorks Australia

•   Python:https://pyradiomics.readthedocs.io/en/latest/index.html#


For the potential use in classification, it is encouraged to extract all radiomic features supported by the library used.

Step Four: Feature Selection

Three properties are generally used for featureselection: repeatability, saliency, and compactness. In this  project,  we  use  repeatability  as  the  criteria  of  feature  selection.  Conventional  features  are typically highly repeatable; however, the repeatability of radiomic features is not guaranteed.

Design a strategy for repeatability test; you can use the following case to  understand the feature repeatability and as a guide to ‘mimic’ the differences between the two MRI examinations:

‘A patient with glioma had a brain MRI examination on Day 1 at Sir Charles Gairdner Hospital; on Day 2, the  patient  had  another  brain  MRI  examination  at  Fiona  Stanley  Hospital.  Ignoring  any  tumor growth  between  Day  1  and  Day  2,  a  feature  is  repeatable  if  when  extracted  from  the  two  MRI examinations, the results are equal or equivalent.’

Select the top 10 intensity features, shape features, and texture features based on their repeatability.

Step Five: Classification using SVM

After the feature selection process, students will apply a Support Vector Machine (SVM) to classify the extracted features into categories of Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG).

Data Partition

Assign 10 LGG patients and 10 HGG patients to a ‘hidden’ testing set. Train and validate the SVM classifier on the rest of the dataset. Test the accuracy of classification using the ‘hidden’ testing set.

For data split between the training and the validation sets, you can consider either:

•    Using a fixed data split, or;

•    Using cross-validation.

Before data  partition, find out the  number of  LGG/HGG  patients.  Note the  huge  class  imbalance, which should be addressed.

The Effectiveness of SVM Classification

The  effectiveness  of  the  SVM  in  accurately  classifying  the  glioma  grades  based  on  the  selected features will be evaluated using accuracy:

Accuracy = num_of_correct_classifications / num_of_total_classifications

Deliverables

The deliverables include:

•    A matlabor python GUI. The GUI should include the following components:

1.    A  ‘Load Slice  Directory’  button,  a  ‘Channel’  drop-down  menu,  an ‘Annotation’  drop-down menu, and a ‘Slice ID’ slider.

a.    Clicking  the  ‘Load  Slice  Directory’  should  allow  selecting  a  directory,  which  is  a subfolder  containing   155  H5  files  belonging  to  the  same   MRI  volume.  You  can assume the filenames and the data structure of the H5 files follow the convention of the downloaded dataset; however, the spatial resolution of the slices may vary from the downloaded dataset.

b.   The  ‘Channel’  drop-down  menu  should  control  the  channel  of  the  MRI  volume displayed:  selecting  T1,  T1Gd,  T2,  or  T2-FLAIR  should  display  the  corresponding channel.

c.    The  ‘Annotation’  drop-down   menu  should  control  the   annotation  of  the  tumor displayed: selecting ‘On’ should superimpose the tumor mask on the MRI slice using an alpha value of 0.5; selecting ‘Off’ should not display the tumor mask.

d.   The ‘Slice ID’ slider should control the slice of the volume visualized, dragging the slider should allow changing the slice displayed seamlessly.

2.    An ‘Extract Conventional Features’ button.

Clicking  on  the ‘Extract  Conventional  Features’  button  should  allow  selecting  a  directory  containing multiple subfolders as described in 1.a. For each subfolder in the directory, the  conventional features  should  be  extracted.  The  output  of  ‘Extract  Conventional  Features’ should  be  a  CSV  file  named  ‘conventional_features.csv’  storing  the  extracted  results,  as  shown in Fig. 3:

 

Figure 3 .

3.    An ‘Extract Radiomic Features’ button.

Clicking  on  the  ‘Extract  Radiomic  Features’  button  should  allow  selecting  a  directory containing multiple subfolders as described in 1.a. For each subfolder in the directory, the top  10  intensity-based,  shape-based,  and  texture-based   radiomic  features  you  selected based on repeatability should be extracted. The output of ‘Extract Radiomic Features’ should be a CSV file named ‘radiomic_features.csv’ storing the extracted results, as shown in Fig. 4:

 

Figure 4. Note, the column names should be the names of the actual radiomic features selected.

•    A  live  presentation  during  the  lab  sessions  in  week  12.  The  presentation  should  include  (i)  a display  of  the  designed  GUI;  (ii)  methods  used  for  extracting  the  conventional  features;  (iii) strategy  used  for  verifying  the  repeatability  of  the  radiomic  features;  (iv)  the  top  radiomic features selected according to repeatability; (v) the features used in the SVM classifier and the accuracy of classification during training and testing. Detailed schedule of the presentation will be released on LMS prior to week 12.

•     A readme file detailing the SVM classification model. Importantly, the readme file should include:

•     Detailed data partition;

•     The features used for training;

•     The accuracy of the model in classifying the MRI images during training, validation, and testing;

•     A discussion of the SVM’s accuracy with regard to featureselection. Is using repeatability as the sole criteria for featureselection good?

•     Any challenges encountered during the classification process.

Mark Distribution

•     Visualization: GUI functional  properly for ‘Load Slice Directory’, ‘Channel’, ‘Annotation’, and seamless slice-by-slice visualization. (15%)

•     Conventional  features:  quality  of  the  extraction  of  conventional  features,  which  will  be tested on a hidden set of MRI volumes. (35%)

•     Repeatability  test:  the  robustness  and  reasonableness  of the  designed  repeatability  test (15%)

•     Radiomic  features:  repeatability  of the  selected  radiomic features on  a  hidden set of  MRI volumes. (25%)

     SVM Classification: accuracy and model discussion. (10%)





Contact Us - Email:99515681@qq.com    WeChat:codinghelp
Programming Assignment Help!